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Crystal Powder Statistics. 
I. Lorentzian Line Profiles in Diffraction Spectra of Bernoullian Samples 
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A Bernoullian powder sample is defined as an ensemble of parallelepiped crystals where the probability of any 
layer being on the surface is independent of its size as well as of the number of its predecessors, although 
being different for the three types of layers parallel to the crystal faces. It is shown that the line profile of any 
reflection is given by the Lorentzian, or Cauchy, distribution I(e) = A/(1 + K2e2), where e is the reciprocal 
coordinate measured from the peak with intensity A, and 2/K is the half-peak width, provided the average 
size of the crystals is at least of the order of 10 unit cells along each of the three edges. 

Introduction 

Most of the current work on line profiles of crystal 
powder diffraction spectra is based upon their Fourier 
analysis, which may lead to the probability distributions 
of unit-cell rows along different directions, as well as to 
the effect of the strains affecting the polycrystalline 
specimens (see, for example, Stokes & Wilson, 1942; 
Warren, 1969). 

In this as well as in subsequent papers, we have 
deemed it useful to reverse somehow the above ap- 
proach; namely, to hypothesize given probability distri- 
butions of crystal dimensions from which to derive the 
corresponding line profiles. The presence of strains has 
been ignored in view of the fact that their separate effect 
may be experimentally evaluated, at least in principle 
(Warren, 1969). 

The Cauchy, or Lorentzian, distribution I(e) = 
A/(1 + K2e 2) is sometimes considered as a satisfactory 
representation of the diffraction line shapes of poly- 
crystalline specimens; I(e) is the intensity at the recip- 
rocal coordinate e measured from the peak with inten- 
sity A, and 2/K is the full width at half-peak height. It 
will be shown in this paper that, if the effect of particle 
strain is neglected, such a line shape is characteristic of 
samples where the statistical ensemble of the crystals is 
described by the following simple rule. Each perfect 
crystal is a parallelepiped with edges parallel to the 
unit-cell vectors a, b and e; it may therefore be con- 
sidered as constituted of three different classes of layers, 
of single unit-cell thickness, parallel to (b,c), (a,e) and 
(a,b). Any layer belonging to the first class within the 

crystalline ensemble has a probability a (,~1) of being a 
terminal layer, regardless both of its lateral dimensions 
and of the number of its predecessors; the same applies 
to layers of the other two classes, their respective proba- 
bilities being fl and ), (,~ 1). In this, as well as in a follow- 
ing paper (Allegra & Ronca, 1978), the parameters a, fl 
and ~, will be used with the same meaning; no confusion 
with the direct cell angles should arise, since they will 
never enter the resulting mathematical expressions. In 
practice, the validity of the following results should be 
sufficiently guaranteed for most purposes by keeping 
each of the probabilities <0.1,  which means that the 
average crystal size corresponds to more than 10 unit 
cells along each direction. In general, the probability for 
a crystal to have edge lengths Nla, N2b, N3c along a, b 
and e is given by 

P(N,,N2,N3) = afly(1 -- ayV,-' (1 -- fl)u~-' (1 -- y)u~-, 

~a f l yexp ( - -N ,a - -N2 f l - -  N3Y), (1) 

where (N1,N2,N3) a r e  any three integral numbers. Since 
the resulting statistics correspond to a BernouUian 
distribution of edge lengths along any of the three 
directions, we shall designate the crystalline ensemble 
as a Bernoullian powder sample. 

Mathematical  treatment 

It is convenient to assume that all the crystals are 
parallel to each other within the sample, with the 
obvious assumption that the amplitudes diffracted by 
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any two of them have no phase coherence. Although 
the overall intensity diffracted for any reciprocal-vector 
length S (= 2 sin 0/2) is the same as for the completely 
disordered sample, the above artifice allows both the 
real and the reciprocal axes to be considered coincident 
for all the crystals. Indicating with (x*,y*,z*) the 
components of S along the reciprocal unit-cell vectors 
(a*, b*, e* respectively), the average diffracted intensity 
may be expressed as 

( I ( x*,y*,z* ) ) = .Ar l FZ( x*,y*,z*) I 

Z ~ Z  ( [ (rx* sy* t z3]  ) 
x r.s,t=-oo exp 2hi - ~  + - ~  + e*]] (2) 

where F(x*,y*,z*) is the structure factor expressed in 
electrons per unit cell, JU is the total number of unit 
cells, while a*, b* and e* are the lengths of a*, b*, e*. 
The exponential in the right-hand side is the phase 
factor relative to a pair of unit cells belonging to two 
rth-neighbor layers of class 1, two sth-neighbor layers 
of class 2, two tth-neighbor layers of class 3. The 
average of each phase factor must be evaluated after 
assigning a unit weight whenever a unit cell has an 
(r,s,t) neighbor within the same crystal, zero otherwise. 
Since the probability of having two rth neighbors among 
the layers of the first class [i.e. parallel to (b,e)] is 
(1 - a) r and is independent of the corresponding prob- 
abilities pertaining to the other two layer classes, we have 

( [ ( r x ' s y *  t z 3 ]  ) 
exp 2hi k a* + - ~  + c* ] 

= ( 1 -  a)r(1 -- fl)' (1 - y)t 

[ ( rx* ,z,tl xexp 2hi a * + - ~ - + - - ~ ] j ,  (3) 

and 

• " ( e l  lrx" sy" Z ) - ~ . Z  xp 2hi ka* +--b - ~ +  e * ] ] /  
r ,  s ,  l = - -oo  

1 ~  (2nirx'l] 
= Lr=-~o ( 1 - a ) r e x p  k a* ] ]  

(1 - fly exp [2zisy~ 
l b*]  

x (1--y) texp \ c* ]J  
L t =  - - o o  

l 1 t = - 1  + 12 ix, + c c 
1 - ( 1 - - a ) e x p \  a* ] 

[ ' 1 
× - 1 +  + c c .  

1 - - ( 1 - - f l ) e x p \  b* ] 
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[ , ,  1 × - 1 +  /2niz,  \ +c.c. , (3') 
1 - ( 1 - y )  expk. c* ] 

where c.c. stands for 'complex conjugate' of each pre- 
ceding term. Since (a,fl, y) are ~ 1 by assumption, the 
value of the above expression is negligibly small except 
when x*/a*, y*/b* and z*/c* are very close to integral 
values. Putting 

x* Ax* y* Ay* z* Az* 
- = h + ~ ;  b--,=k+ . . . .  l + ~  (4) 
a* a* b* ' c* c* ' 

where h, k, I are integers and Ax*/a*, Ay*/b*, Az*/c* 
are ,~ 1, we may expand the exponentials in (3) up to 
first-order terms, neglecting - 1  inside each parenthesis 
and (a,fl,7) in comparison with unity, so that (2) 
transforms to 

h + - U ' k + - b  l + c ' l /  (1) 
= .AFIF2(hkl)I. + c.c 

2niAx* 
0~-- a* 

x + c . c  . + c . c .  ( 5 )  
2niAy* 2niAz* ' 

fl b -------g~ c* 

where the small variation of the structure factor around 
(hkl) is neglected. 

Our purpose is to obtain the integrated intensity for 
any value of S in the vicinity of the (hkl) Bragg point. 
If a*, fl*, y* are the angles between (b*,c*), (a*,c*), 
(a*,b*), respectively, let us recall that 

S 2 = x.2 + y.Z + z.2 + 2x 'y*  cos 7" + 2 x ' z *  cos fl* 

+ 2y 'z*  cos a*, (6) 

wherefrom we may obtain the increments for both sides 
of the equation, i.e. 

SAS = Ax*(x* + y* cos y* + z* cos fl*) 

+ Ay*(x* cos y* + y* + z* cos a*) 

+ Az*(x* cos fl* + y* cos a* + z*), (7) 

neglecting higher-order terms in the increments. From 
(7) we obtain Ax* as a function of (AS,Ay*,Az*), 
taking x* ~_ ha*, y* ~- kb*, z* ~_ le* and S ~_ S(hkl) - 
So, 

Ax* = AAS -- BAy* -- CAz*, (8) 
with 

A = So/ql; B = q2/ql; C = qa/ql; 
ql = ha* + kb* cos y* + lc* cos fl*; 

q2 = ha* cos y* + kb* + Ic* cos a*; 

q3 = ha* cos fl* + kb* cos a* + lc*. (8,) 
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With the above substitution, (5) may be written as 

(~2"~kl ( A S , A y * , A z * ) )  

~ (  Ax* Ay* Az*~X 3 
h + ~  k+ b* l+ 

_ a * '  ' - C - ~ } /  

IF2(hkl)l 

- a+_ 

1 
X 

1 

2ni(AAS - BAy* - CAz*) 

2niAy* 

b* c* 

12" 

2niAz* ' (9) 

where the sum is to be extended to the eight terms con- 
taining the different combinations of + and - signs. 
The integrated intensity that produces the line profile in 
the powder spectrum is 

(...~" hkt(AS)) = j ./ (,P'okt(dS, Ay*,Az*)) d 2 Y ,  
(10) 

where 5 p is the surface of the sphere with radius S O + 
AS, in reciprocal space. Obviously enough, the surface 
element dZ,5 ~' must be expressed in terms of a double 
differential containing dAy*dAz* in order for the inte- 
gration to be carried out. To this effect, it is useful first 
to refer to orthogonal coordinates (xo,Yo,Zo) in 
reciprocal space, with the convention that x* coincides 
with x*, while y* lies in the plane containing the x* 
and y* axes. In the orthogonal coordinates d E y  may 
be simply expressed as 

d 2 Y  = dAx* dAy*/Icos al, (1 l) 

where a is the angle between the reciprocal vector S O 
and the axis x*; consequently, cos a = x , / S  o and 

d25"~=(So/Ix*l)ddx, day*. (12) 

From the above, the linear transformation connecting 
(x*,y*,z*) with (xo,Yo,Zo) is given by the matrix 
product 

(xo,Yo,Zo) = (x*,y*z*) 

I 1  0 I COS 7* Sin 7* 
X 

~kco s fl. cos a* -- cos fl* cos 7* R* 
sin 7* s~n ~* 

(13) 

where R* = (1 -- cos 2 a* -- cos 2 fl* -- cos 2 7* + 
2 cos a* cos fl* cos 7,)m. 

Because of the special choice of axial orientation, 
(13) shows that the transformation leading from 
(y*,z*) to * * (y0,z0) is a subset of the general trans- 

formation, i.e. 
(.v0,z0) = (y*,z*) (sin, 0) 

x cos a* -- cos fl* cos ?* R* • (14) 

sin ?* sin 7" 

Equation (12) may now be expressed in terms of 
(x*,y*z*), considering that So~x* coincides with .4 
[compare (8') and (13)1" 

d 2 y  = IAI R* dAy* dAz*, (15) 

since the Jacobian J(yo,zo/y ,z ) is obviously the 
determinant of the 2 x 2 matrix reported in (14), i.e. R *. 

We are ready now to perform the integration (10) 
after the substitution (15). Since the average intensity 
[see equation (9)] virtually vanishes unless both Ay* 
and Az* are very small, the double integral may be 
computed from - m  to + m  over both variables, while 
(x*,y*,z*) and S = S o - S(hkl) may be considered as 
constant quantities, i.e. 

(J 'hu(z~s))  = ~ I A  IR* 

× Z f+_, -co ~ { [ a +  2ni(AAS--BAy*--CAz*)la, 

x + b* + ~ dAy*dAz*. (16) 
-- C* ] 

Let us first consider the integral over Ay*. Although the 
variable of integration is real, we may use the theorem 
of residues, since the absolute value of the integrand 
behaves as 1/tAy*l 2 for Ay* -, oo. In order for any of 
the eight integrals to be non-zero, the two poles must be 
located on opposite sides with respect to the real axis. 
We have the following choices for the + signs within 
brackets, depending on the actual sign of B, in order to 
obtain a non-zero result: 

Sign within Sign within 
first brackets second brackets Sign of B 

+ + + 

It is possible to verify that the above selection rules lead 
to the following result for the sum of integrals in (16): 

X f+~ a* b* c* dAz*/{[aa* + IBlflb* 
+ 

+ 2ni(AAS- CAz*)] [7c* + 2niAz]}. (17) 

The eight integrals in (16) are thus reduced to four. 
With a similar argument, integration over Az* leads to 

l 1 a* + fllBlb* + 71Cic* + 2niAAS + c . c . .  
( 8 )  
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Now, substitution into (16) gives the following result, 
remembering that R*a*b*c* = V* = V -1 (V = volume 
of the unit cell) and (8'), 

( ~,h, l(dS))  = ~ S(hkl) 2Q(hkl) 
V 

where 

" Q2(hkl) + 4~z2S2(hkl)A2 S" 

(19) 

Q(hkl)= aa*lha* + kb* cos y* + lc* cos fl*l 

+ flb*lha* cos y* + kb* + lc* cos a*l 

+ yc*lha* cos t*  + kb* cos a* + lc*l. (19') 

It is apparent that the intensity given by (19) corres- 
ponds to a Lorentzian function, the peak height and the 
full width at half height being 

l 2 S ( h k l ) .  
<~"hkl (0)> : J V a ( h k l ) '  

Wl,,2.h, t = Q(hkl)/[rcS(hkl)] (in units S), (20) 

while the intensity profile integrated over AS is 
+03 

J =  .f ( J"hk t (AS)>dAS=.W/V ,  (21) 
- - 0 3  

as it is easy to obtain from (19). This is the well known 
general result characteristic of any crystalline system, 
irrespective of its actual morphological state (see, for 
example, Warren, 1969). 

A related property is that the product of the peak 
height times the peak width is also independent of Q 
and S: 

2 
<~"hkl(O)> WI/2 hkl : ' ~  - -  (22) 

, 7~ V ' 

i.e. the peak height is inversely proportional to its width, 
for a given value of the structure factor. 

Although both the peak height and the half-peak 
width depend on the particular values of the Bragg 
indices (h, k, l), it may be easily seen from (19) and (20) 
that they are identical for reflections characterized by 
the same ratios between the indices, as expected (i.e. 
successive orders of one same reflection). 

It may be useful to specialize the above result to the 
space groups for which cos a* = cos fl* = cos y* = 0. 
We obtain from (19'): 

Q(hkl) = alhla .2 + fllklb .2 + yl/Ic .2, 

S(hkl) = (h2a .2 + k2b .2 + 12c'2) 1/2. (23) 

Consequently, [see equation (20)], the line profiles of 
the reflections along the diagonals tend to be broader 
than those along the axes of reciprocal space. For 
instance, in the simplest cubic case we have, for three 
typical choices (taking a = fl = y; a* = b* = c* = 1/a), 

2~¢/" (h 2 + k 2 + 12)1/2 

<~t'hkl(O)> aa 2 Ihl + Ikl + Ill ' 

a Ihl + Ikl + Ill 
Win. h,t = na (h 2 + k 2 + 12) 1/r (24) 

As it may be seen, the peak width is largest for I hl = 
Ikl = Ill and smallest for k = l = 0, h :/: 0, the ratio 
between the corresponding values being v/3; of course, 
the converse must be applied to the peak height. 

# • 

Conclusions 

It has been shown that, provided (i) all the perfect 
crystals belonging to the sample are parallelepipeds 
bounded by the same set of crystallographic planes, and 
(ii) the distribution of the three edge lengths is Bernoul- 
lian with an average value larger than 10 unit cells, all 
the diffraction line profiles have a Lorentzian shape. It 
appears quite reasonable to reverse the argument, i.e. if 
the vast majority of the crystals are parallelepipeds and 
their observed line profiles are (close to) Lorentzian, 
then the Bernoullian distribution for the three edge 
lengths should be approached. Under these conditions 
an appropriate choice for the parameters (a, fl, y) 
should allow a satisfactory interpretation of the observed 
line profiles in terms of (19). Once a, fl and y are 
known, several important statistics of the sample may 
be obtained. As examples, the average edge length 
along a, for example, is a/a, and the average volume of 
the crystals is V/(afly) = V(N>, (N') being the average 
number of units per crystal. A more detailed discussion 
of the statistical implications of the Bernoullian distri- 
bution will be given in a following paper (AUegra & 
Ronca, 1978). 

More generally, it may be worth pointing out that the 
Lorentzian shape associated with any reflection of a 
general powder sample should always be related to a 
probability distribution P (N)  = a exp (--Na)(a ~ 1) for 
the rows containing N unit cells, perpendicular to the 
diffracting planes. This proceeds directly from the 
general possibility of describing the diffracting domains 
in terms of the above mentioned unit-cell rows as 
independently diffracting entities (Bertaut, 1949; 
Warren, 1969). 

This work was made possible by a Research Contract 
with Montedison SpA. The authors thank Dr G. Ronca 
for useful discussions. 
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